Note

Synthesis of 1,3-dideoxy-3-fluoronojirimycin *

C.-Kuan Lee, Huixin Jiang, Lip Lin Koh and Yan Xu

Department of Chemistry, National University of Singapore, Kent Ridge 0511 (Singapore)

(Received May 30th, 1992; accepted August 6th, 1992)

Since the discovery that several naturally occurring, mono- and bi-cyclic, polyhydroxylated alkaloids¹ are potent inhibitors of glycosidases², including those involved in the processing of glycoproteins³, there has been considerable interest in analogues as potential therapeutic agents for the treatment of AIDS. We have reported the synthesis of potential intermediates for 1-deoxynojirimycin, castanospermine, and swainsonine from simple sugars^{4,5}, and now describe a synthesis of 1,3-dideoxy-3-fluoronojirimycin [(2R, 3R, 4R, 5S)-4-fluoro-3,5-dihydroxy-2-hydroxymethylpiperidine] (1) and its X-ray crystal structure.

Hydrogenation of 5-azido-6-O-benzoyl- (2) or -6-O-tert-butyldiphensylsilyl-3,5-dideoxy-3-fluoro-1,2-O-isopropylidene- α -D-glucofuranose⁴ (3) gave the 5-amino-5-deoxy derivatives 4 and 5, respectively. Debenzoylation (sodium methoxide) of 4, or desilylation (tetrabutylammonium fluoride) of 5, followed by deacetalation [Amberlite IR-120 (H⁺) resin] and hydrogenation (Pd/C) gave 1, but the yield was low. An improved procedure involved deacetalation of 5-azido-3,5-dideoxy-3-fluoro-1,2-O-isopropylidene- α -D-glucofuranose⁴ (6), followed by hydrogenation.

The structure of 1 was confirmed by the 1 H, 13 C, and 19 F NMR spectra. The presence of a deoxy group at C-1 was reflected by the signals at δ 3.06 ($J_{1ax,1eq}$ 12.6, $J_{1eq,2}$ 5.0 Hz, H-1eq) and 2.40 ($J_{1ax,2}$ 11.0 Hz, H-1ax). The 19 F- 1 H couplings of 1 were similar to those of 3-deoxy-3-fluoro-p-gluco compounds 6 . The $^4J_{\text{F-3,H-1eq}}$ value of 6.4 Hz accords with the known stereospecificity of such coupling 7 .

The $^1\mathrm{H}$ and $^{19}\mathrm{F}$ NMR spectra of the triacetate (7) of 1 had $J_{\mathrm{F-3,H-2}}$ and $J_{\mathrm{F-3,H-4}}$ values of ~ 0 Hz, which indicated the dihedral angles H-2-F-3 and H-4-F-3 to be near to 90°. Molecular models showed that such dihedral angles are possible only when the ring N and C-1,2,4,5 are nearly coplanar. This distortion precludes $^4J_{\mathrm{F,H}}$ coupling of the type observed for 1.

Correspondence to: Dr. C.-K. Lee, Department of Chemistry, National University of Singapore, Kent Ridge 0511, Singapore.

^{* 1,3-}Dideoxy-3-fluoronojirimycin Derivatives, Part I.

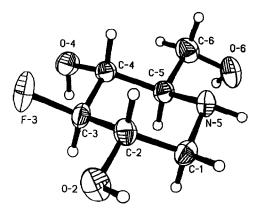
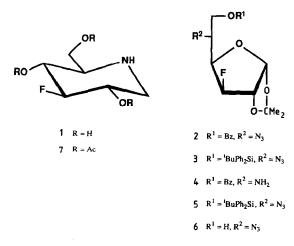



Fig. 1. XP plot¹³ of 1,3-dideoxy-3-fluoronojirimycin (1) giving the numbering scheme.

The structure of 1 was further confirmed by X-ray crystallography (see Fig. 1). The structure and numbering systems are shown in Fig. 1. The unit cell contained discrete molecules of 1 (Fig. 2), a single molecule comprising the asymmetric unit. Bond lengths and angles are within the normal ranges; average bond lengths, C-C=1.518 Å, C-N=1.468 Å, and C-O=1.425 Å. The C-F bond length (1.401 Å) is comparable to those found for fluorinated monosaccharides (1.397-1.410 Å)⁸. The six-membered ring has the chair conformation. The Cremer and Pople ring-puckering parameters⁹, $Q=47.1^{\circ}$, $\theta=16.4^{\circ}$, and $\phi=47.1^{\circ}$, indicated a moderate distortion of the 4C_1 chair conformation towards the NH_5 form. The C-1-N-5-C-5 bond angle (112.0°) is much closer to the nearly tetrahedral C-N-C angle (108°) of trimethylamine than those found in 2,2,6,6-tetramethyl-4-(2,3,4,6-tetra-O-acetyl- β -D-glucopyranosyloxy)piperidine (126°)¹⁰ or the free nitroxide (134°)¹¹. The torsion angle C-4-C-5-C-6-O-6 (-171.2°) corresponded to the usual more

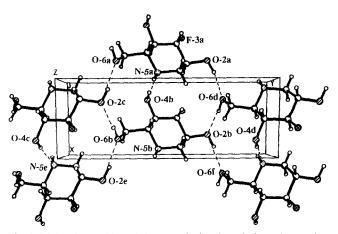


Fig. 2. Molecular packing of the crystal of 1 viewed along the c axis.

stable conformation of the hydroxymethyl group, in which O-6 is gauche to O-5 and trans to C-4, also designated¹² gt [N-5-C-5-C-6-O-5 (68°) and C-4-C-5-C-6-O-6 (-171.2)], and HO-6 is both a receiver and donor of hydrogen bonds from and to HO-2 of two adjacent molecules. A third intermolecular hydrogen bond holding the molecules together in the crystal is that between the ring nitrogen and O-4 (Fig. 2, Table III). The fluorine substituent is not involved in hydrogen bonding.

EXPERIMENTAL

Optical rotations were determined at 22-25 °C in a 1-dm tube with a Perkin-Elmer 141 polarimeter. The 1 H, 13 C, and 19 F NMR spectra (internal Me₄Si) were recorded with a Bruker ACS-300 (300 MHz) or AMX-500 (MHz) spectrometer. EI-mass spectra (70 eV) were determined with a Micromass VG 7035 spectrometer. Melting points were determined using a Büchi 512 melting-point apparatus and are uncorrected. Microanalyses were carried out using a Perkin-Elmer 2400 Elemental Analyser. Reactions were monitored by TLC on Silica Gel 60 F₂₅₄ (Merck) with detection by charring with H₂SO₄. 1-Deoxynojirimycin derivatives were detected with ninhydrin. Flash-column chromatography was performed on Kieselgel 60 (Merck 230-400 mesh) at 5-10 psi.

5-Amino-6-O-benzoyl-3,5-dideoxy-3-fluoro-1,2-O-isopropylidene- α -D-glucofuranose (4).—A suspension of Pd(OH)₂ (20%) on activated charcoal (80 mg) in EtOH (20 mL) and tetrahydrofuran (10 mL) was shaken under H₂ (50 psi) for 2 h. Compound 2 (ref. 4, 95.5 mg) was then added and hydrogenated (50 psi) for 4 h at room temperature. TLC (3:5 EtOAc—hexane) then revealed only one slow-moving spot. The solution was filtered and concentrated, and a solution of the residue in EtOAc was washed (thrice) with aq 10% NaOH, dried (MgSO4), filtered, and concentrated to give 4 (84.3 mg, 94.9%); mp 110–111°C (from EtOAc-hexane);

[α]_D +10° (c 1.0, MeOH), NMR data (CD₃COCD₃): ¹H, δ 7.4–8.2 (m, 5 H, Ph), 6.04 (d, 1 H, $J_{1,2}$ 3.8 Hz, H-1), 4.86 (dd, 1 H, $J_{3,4}$ 1.9, $J_{3,F}$ 50.15 Hz, H-3), 4.75 (dd, 1 H, $J_{2,F}$ 10.9 Hz, H-2), 4.67 (dd, 1 H, $J_{5,6a}$ 2.7, $J_{6a,6b}$ 10.8 Hz, H-6a), 4.54 (ddd, 1 H, $J_{4,5}$ 9.6, $J_{4,F}$ 29.8 Hz, H-4), 4.39 (m, 1 H, H-6b), 4.20 (td, 1 H, H-5), 1.31 and 1.47 (2 s, 6 H, CMe₂); ¹³C, δ 112.8 (s, CMe₂), 106.1 (s, C-1), 95.2 (d, $J_{3,F}$ 182.8 Hz, C-3), 83.0 (d, $J_{2,F}$ 32.8 Hz, C-2), 80.4 (d, $J_{4,F}$ 19.5 Hz, C-4), 66.8 (d, $J_{5,F}$ 5.5 Hz, C-5), 58.1 (s, C-6), 26.5 and 26.9 [2 s, C(CH₃)₂]; ¹⁹F, δ −133.5. Anal. Calcd for C₁₆H₂₀FNO₅: C, 59.07; H, 6.20; F, 5.84; N, 4.31. Found: C, 58.85; H, 5.78; F, 5.53; N, 4.04.

5-Amino-6-O-tert-butyldiphenylsilyl-3,5-dideoxy-3-fluoro-1,2-O-isopropylidene-α-D-glucofuranose (5).—Compound 3 (ref. 4, 0.54 g) was treated with Pd(OH)₂ (20%) on activated charcoal (0.35 g), as described for 2, to give syrupy 5 (0.41, 80%); [α]_D – 23° (c 1.0, CHCl₃). NMR data (CDCl₃): 1 H, δ 7.2–7.7 (m, 10 H, 2 Ph), 5.95 (d, 1 H, $J_{1,2}$ 4.0 Hz, H-1), 5.13 (dd, 1 H, $J_{3,4}$ 2.1, $J_{3,F}$ 50.1 Hz, H-3), 4.68 (dd, 1 H, $J_{2,F}$ 10.9 Hz, H-2), 4.23 (ddd, 1 H, $J_{4,5}$ 9.2, $J_{4,F}$ 30.6 Hz, H-4), 3.86 (dd, 1 H, $J_{5,6a}$ 3.4, $J_{6a,6b}$ 10.1 Hz, H-6a), 3.82 (dd, 1 H, $J_{5,6b}$ 5.0 Hz, H-6b), 3.23 (td, 1 H, H-5), 2.70 (s, 2 H, N-H), 1.26 and 1.46 (2 s, 6 H, CMe₂), 1.07 (s, 9 H, t Bu); t3 C, δ 111.1 (s, CMe₂), 104.0 (s, C-1), 93.6 (d, $J_{3,F}$ 183.3 Hz, C-3), 81.5 (d, $J_{2,F}$ 32.5 Hz, C-2), 79.1 (d, $J_{4,F}$ 18.7 Hz, C-4), 64.6 (s, C-5), 49.9 (s, C-6), 29.3 [2 s, C(CH₃)₂], 18.3 [s, C(CH₃)₃]; t9 F, δ –130.35. Anal. Calcd for C₂₅H₃₄FNO₄Si: C, 65.34; H, 7.46; F, 4.13; N, 3.05. Found: C, 65.66; H, 7.83; F, 3.94; N, 2.84.

1,3-Dideoxy-3-fluoronojirimycin (1).—A solution of 6 (ref. 4, 1.33 g) in water (14 mL) was treated with Amberlite- 120 (H⁺) resin (2.2 g) for 20 h at 40°C, then filtered, and concentrated at room temperature. The residue was hydrogenated (50 psi) in the presence of Pd(OH)₂ (20%) on activated charcoal (~ 1 g) in EtOH (45 mL), as described for 4, to give, after flash-column chromatography (9:1 EtOAc-MeOH), 1 (0.45 g, 62.7%); mp 161-162 °C (from EtOH-ether); $[\alpha]_D + 39^\circ$ (c 0.2,

TABLE I	
Atomic coordinates (×10 ⁴) and equivalent isotropic displacement coefficients U	$U_{\rm eq}^{a} (\mathring{A}^2 \times 10^3)^{b}$

Atom	x	y	z	$U_{ m eq}$
C-1	8707(5)	5592(3)	4648(5)	29(1)
C-2	7574(5)	5958(3)	1973(5)	27(1)
C-3	4869(5)	5485(3)	1204(5)	28(1)
C-4	4691(5)	4401(2)	1318(5	26(1)
C-5	6321(5)	4065(2)	3977(5)	27(1)
C-6	6694(6)	2982(3)	4093(6)	38(1)
N-5	8966(4)	4544	4570(4)	29(1)
O-2	7164(4)	6971(2)	1943(4)	39(1)
O-4	2324(3)	4004(2)	667(4)	37(1)
O-6	7575(4)	2667(2)	6662(4)	44(1)
F-3	3849(3)	5761(2)	- 1310(3)	48(1)

^a Equivalent isotropic U defined as one third of the trace of the orthogonalized U_{ij} tensor. ^b Standard deviation in parentheses.

H₂O). NMR data (D₂O): ¹H, δ 4.18 (tt, 1 H, $J_{3,4}$ 8.9, $J_{3,F}$ 53.5 Hz, H-3), 3.73 (q, 1 H, $J_{5,6a}$ 2.9, $J_{6a,6b}$ 11.8 Hz, H-6a), 3.68 (qq, 1 H, $J_{1ax,2}$ 11.0, $J_{1eq,2}$ 5.0, $J_{2,3}$ 8.9, $J_{2,F}$ 14.4 Hz, H-2), 3.58 (q, 1 H, $J_{5,6b}$ 5.6 Hz, H-6b), 3.45 (ddd, 1 H, $J_{4,5}$ 10.1 $J_{4,F}$ 13.3 Hz, H-4), 3.06 (td, 1 H, $J_{1ax,1eq}$ 12.6, $J_{1eq,2}$ 5.0, $J_{1eq,F}$ 6.4 Hz, H-1eq), 2.49 (m 1 H, H-5), 2.40 (ddd, 1 H, $J_{1ax,2}$ 11.0 Hz, H-1ax); ¹³C, δ 101.7 (d, $J_{3,F}$ 179.2 Hz, C-3), 72.3 (d, $J_{2,F}$ 16.8 Hz, C-2), 71.9 (d, $J_{4,F}$ 16.6 Hz, C-4), 63.5 (s, C-6), 62.5 (d, $J_{1,F}$ 6.0 Hz, C-1), 50.4 (d, $J_{5,F}$ 7.7 Hz, C-5); ¹⁹F, δ −116.8. Anal. Calcd for C₆H₁₂FNO₃: C, 43.63; H, 7.32; F, 11.50; N, 8.48. Found: C, 43.92; H, 7.56; F, 11.89; N, 8.56.

N-Acetyl-2,4,6-tri-O-acetyl-1,3-dideoxy-3-fluoronojirimycin (7).—Conventional treatment of 1 in pyridine and acetic anhydride gave, after flash-column chromatography (2:1 EtOAc-hexane), 7 (35.3%); $[\alpha]_D$ – 18.3° (c 1.0 CHCl₃). NMR data (CDCl₃): 1 H, δ 4.8–5.2 (m, 3 H, H-2,4,5), 4.6–4.8 (m, H-3), 4.3–4.6 (m, 2 H, H-6a,6b), 4.16 (dd, $J_{1ax,1eq}$ 11.6, $J_{1eq,2}$ 5.1 Hz, H-1eq), 3.7–3.9 (m, 1 H, H-1ax), 2.06, 2.09, 2.10, 2.12 (4 s, 12 H, 4 Ac); 13 C, δ 84.2 (d, $J_{3,F}$ 177.6 Hz, C-3), 67.25 (d, $J_{2,F}$ 26.4 Hz, C-2), 65.3 (d, $J_{4,F}$ 27.65 Hz, C-4), 59.2 (s, C-6), 54.4 (s, C-1), 49.5 (s, C-5), 21.7 (s, NCH₃), 20.3 (s, 3 C, 3 CH₃CO); 19 F, δ –117.3 ($J_{H-3,F}$ 43.9, $J_{H-2,F}$ = $J_{H-4,F}$ = 0 Hz). Anal. Calcd for $C_{14}H_{20}FNO_7$: C, 50.45; H, 6.05; F, 5.70; N, 4.20. Found: C, 50.02; H, 6.23; F, 5.43; N, 3.89.

Crystal data for 1.— $C_6H_{12}FNO_3$, M_r 165.2, a=5.007(1), b=13.87(33), c=5,265(1) Å, $\beta=98.35(3)^\circ$, monoclinic space group $P2_1$, V=361.8 Å³, Z=2, $D_x=1.516$, $\mu=0.135$ mm⁻¹, and F(000)=176. A single crystal of approximate size $0.4\times0.35\times0.2$ mm was studied, using a Siemens R3m/v diffractometer, with Mo radiation (graphite monochromator). The cell parameters were determined from 25 reflections by a least squares procedure. Intensity data were collected in the range $\theta=7-45^\circ$ (h=0-5, k=0-16, l=-6-6). Three standard reflections were measured every 100 reflections. A total of 734 reflections was measured and 611 with $I>4\sigma(I)$ were used in subsequent calculations.

TABLE II
Selected torsion angles (°) ^a

C-1-C-2-C-3-C-4	-55.3(.3)	C-1-C-2-C-3-F-3	- 176.4(.3)
C-2-C-3C-4-C-5	55.2(.3)	C-2-C-3-C-4-O-4	176.7(2)
C-2-C-1-N-5-C-5	-65.0(.3)	C-3-C-4-C-5-C-6	-174.6(.2)
C-3-C-4-C-5-N-5	-53.3(.3)	C-4-C-5-C-6-O-6	-171.2(.2)
C-4-C-5-N-5-C-1	61.0(.3)	C-6-C-5-N-5-C-1	-176.3(.2)
F-3-C-3-C-4-C-5	174.6(.2)	F-3-C-3-C-4-O-4	-60.9(.3)
F-3-C-3-C-4-H-4	56.9(.2)	H-1eq -C-1-C-2-H-2	60.9(.1)
H-1ax -C-1-C-2-H-2	179.9(.1)	H-1eq-C-1-N-5-H-N	51.4(.1)
H-1ax -C-1-N-5-H-N	-67.7(.1)	H-2-C-2-C-3-H-3	-175.2(0)
H-3-C-3-C-4-H-4	174.6(0)	H-4-C-4-C-5-H-5	-177.5(0)
H-5-C-5-C-6-H-6a	69.2(.1)	H-5-C-5-C-6-H-6b	-172.6(0)
H-5-C-5-N-5-H-N	60.1(0)	N-5-C-1-C-2-C-3	59.2(.2)
N-5-C-1-C-2-O-2	177.5(.2)	N-5-C-5-C-6-O-6	68.0(.3)
O-2-C-2-C-3-C-4	-176.2(.2)	O-2-C-2-C-3-F-3	62.7(.3)
O-4-C-4-C-5-C-6	61.7(.2)	O-4-C-4-C-5-N-5	- 177.0(.2)

^a Standard deviation in parentheses.

А-Н · · · В	Symmetry operation on A	A ⋅ ⋅ ⋅ B (Å)	A–H (Å)	H ⋅ ⋅ ⋅ B (Å)	A-H · · · B (°)
O-4-H-4 · · · N-5	-1+x, y, z	2.935(3)	0.91(2)	2.04(2)	169(2)
O-2-H-2···O-6	2-x, $0.5+y$, $1-z$	2.802(4)	0.91(2)	1.91(2)	166(2)
O-6-H-6 · · · O-2	1-x, $-0.5+y$, $1-z$	2.758(4)	0.89(2)	1.88(2)	169(2)

TABLE III

Hydrogen bond characteristics ^{a,b}

Determination of structure and refinement *.—The structure was determined by the direct method and refined by a full matrix least-squares procedure, using SHELXTL PLUS¹³ on a Micro Vax 2000 computer. The carbon, fluorine, nitrogen, and oxygen atoms were then refined anisotropically. The hydrogen atoms were included with isotropic temperature factors in the final R calculations, but their positions were not refined. The final refinement gave R = 0.28, wR = 0.039, $\max \Delta/\sigma = 0$ with a goodness-of-fit of 1.64, and the largest difference peak of 0.15 $e\mathring{A}^{-3}$. The weighting scheme was $w^{-1} = \sigma^2(F) + 0.0003F^2$.

The atomic coordinates and equivalent isotropic displacements coefficients, and torsion angles are given in Tables I and II, respectively, and the hydrogen bond characteristics are given in Table III.

ACKNOWLEDGEMENTS

We thank the National University of Singapore for financial support, and Miss S.Y. Wong and Mr. B.H. Yeo for technical assistance.

REFERENCES

- 1 L.E. Fellows and W.G. Fleet, in G.H. Wagman and R. Cooper (Eds.), *Natural Products Isolation*, Elsevier, Amsterdam, 1988, pp 539-559.
- 2 R. Raul, J.P. Chambers, R.J. Molyneux, and A.D. Elbein, Arch. Biochem. Biophys., 221 (1983) 593-597.
- 3 V.W. Sasak, J.M. Ordvas, A.D. Elbein, and R.W. Berningerm, Biochem. J., 232 (1985) 759-766.
- 4 C.-K. Lee, H. Jiang, and L.L. Koh, Carbohydr. Res., 225 (1992) 99-111.
- 5 C.-K. Lee, H. Jiang, and L.L. Koh, Carbohydr. Res., 223 (1992) 271-278.
- 6 J.S. Brimacombe, A.B. Foster, R. Hems, J.H. Westwood, and L.D. Hall, Can. J. Chem., 48 (1970) 3946-3952.
- 7 A.B. Foster, R. Hems, and L.D. Hall, Can. J. Chem., 48 (1970) 3937-3945.
- 8 W. Choong, D.C. Craig, N.C. Stephenson, and J.D. Stevens, Cryst. Struct. Commun., 4 (1975) 111-115 and 491-494.
- 9 D. Cremer and J.A. Pople, J. Am. Chem. Soc., 97 (1975) 1354-1358.

^a A, Donor atom; B, acceptor atom. ^b Standard deviations in parentheses.

^{*} Lists of bond lengths, bond angles, final atomic parameters, anisotropic thermal parameters, hydrogen positions and F_0/F_c are deposited with, and can be obtained from, Elsevier Science Publishers B.V., BBA Data Deposition, P.O. Box 1527, Amsterdam, The Netherlands. Reference should be made to No. BBA/DD/516/Carbohydr. Res., 239 (1993) 309-315.

- 10 F. Cinget, D. Gagnaire, A. Grand, and P.J.A. Vottero, Carbohydr. Res., 218 (1991) 1-8.
- 11 P.J. Lajzerowicz-Bonneteau, Acta Crystallogr., Sect. B, 24 (1968) 196-199.
- 12 G.A. Jeffrey, Y. Yeon, and J. Abola, Carbohydr. Res., 169 (1987) 1-11.
- 13 G.M. Sheldrick, SHELXTL Plus Release 4.0 for Siemens R3m/V Crystallographic Research Systems, Siemens Analytical X-ray Instruments, Madison, WI, USA, 1990.